
Package: bulkreadr (via r-universe)
September 10, 2024

Title The Ultimate Tool for Reading Data in Bulk
Version 1.1.1
Description Designed to simplify and streamline the process of reading

and processing large volumes of data in R, this package offers
a collection of functions tailored for bulk data operations. It
enables users to efficiently read multiple sheets from
Microsoft Excel and Google Sheets workbooks, as well as various
CSV files from a directory. The data is returned as organized
data frames, facilitating further analysis and manipulation.
Ideal for handling extensive data sets or batch processing
tasks, bulkreadr empowers users to manage data in bulk
effortlessly, saving time and effort in data preparation
workflows. Additionally, the package seamlessly works with
labelled data from SPSS and Stata.

License MIT + file LICENSE

URL https://github.com/gbganalyst/bulkreadr,
https://gbganalyst.github.io/bulkreadr/

BugReports https://github.com/gbganalyst/bulkreadr/issues

Depends purrr
Imports curl, dplyr, fs, googlesheets4, haven, inspectdf, labelled,

lubridate, magrittr, methods, openxlsx, readr, readxl, rlang,
sjlabelled, stats, stringr, tibble, tidyr

Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1
Repository https://gbganalyst.r-universe.dev
RemoteUrl https://github.com/gbganalyst/bulkreadr
RemoteRef HEAD
RemoteSha 782408235b13ca4d1d196cf77c6d565088807d8f

1

https://github.com/gbganalyst/bulkreadr
https://gbganalyst.github.io/bulkreadr/
https://github.com/gbganalyst/bulkreadr/issues

2 convert_to_date

Contents
convert_to_date . 2
fill_missing_values . 3
generate_dictionary . 4
inspect_na . 5
look_for . 6
pull_out . 7
read_csv_files_from_dir . 8
read_excel_files_from_dir . 9
read_excel_workbook . 10
read_gsheets . 11
read_spss_data . 13
read_stata_data . 14

Index 15

convert_to_date User friendly date parsing function

Description

convert_to_date() parses an input vector into POSIXct date object. It is also powerful to convert
from excel date number like 42370 into date value like 2016-01-01.

Usage

convert_to_date(date_num_char, tz = "UTC")

Arguments

date_num_char A character or numeric vector of dates

tz Time zone indicator. If NULL (default), a Date object is returned. Otherwise a
POSIXct with time zone attribute set to tz.

Value

a vector of class Date

Examples

** heterogeneous dates **

dates <- c(
44869, "22.09.2022", NA, "02/27/92", "01-19-2022",
"13-01- 2022", "2023", "2023-2", 41750.2, 41751.99,
"11 07 2023", "2023-4"

)

fill_missing_values 3

convert_to_date(dates)

fill_missing_values Fill missing values in a data frame

Description

fill_missing_values() is an efficient function that addresses missing values in a data frame.
It uses imputation by function, also known as column-based imputation, to impute the missing
values. For continuous variables, it supports various methods of imputation, including minimum,
maximum, mean, median, harmonic mean, and geometric mean. For categorical variables, missing
values are replaced with the mode of the column. This approach ensures accurate and consistent
replacements derived from individual columns, resulting in a complete and reliable dataset for im-
proved analysis and decision-making.

Usage

fill_missing_values(
df,
selected_variables = NULL,
method = c("mean", "min", "max", "median", "harmonic", "geometric")

)

Arguments

df A dataframe to process for missing value imputation.
selected_variables

An optional vector of variable names within df for which missing values should
be imputed. If NULL (default), imputation is applied to all variables in the data
frame. Variables must be quoted.

method A character string specifying the imputation method for continuous variables.
Supported methods are "min", "max", "mean", "median", "harmonic", and
"geometric". The default method is "mean". For categorical variables, the
mode is always used.

Value

A data frame with missing values imputed according to the specified method.

Examples

library(dplyr)

Assuming 'df' is the dataframe you want to process

df <- tibble::tibble(
Sepal_Length = c(5.2, 5, 5.7, NA, 6.2, 6.7, 5.5),

4 generate_dictionary

Petal_Length = c(1.5, 1.4, 4.2, 1.4, NA, 5.8, 3.7),
Petal_Width = c(NA, 0.2, 1.2, 0.2, 1.3, 1.8, NA),
Species = c("setosa", NA, "versicolor", "setosa",

NA, "virginica", "setosa")
)

Impute using the mean method for continuous variables

result_df_mean <- fill_missing_values(df, method = "mean")

result_df_mean

Impute using the geometric mean for continuous variables and specify
variables `Petal_Length` and `Petal_Width`.

result_df_geomean <- fill_missing_values(df, selected_variables = c
("Petal_Length", "Petal_Width"), method = "geometric")

result_df_geomean

Impute missing values (NAs) in a grouped data frame

You can do that by using the following:

sample_iris <- tibble::tibble(
Sepal_Length = c(5.2, 5, 5.7, NA, 6.2, 6.7, 5.5),
Petal_Length = c(1.5, 1.4, 4.2, 1.4, NA, 5.8, 3.7),
Petal_Width = c(0.3, 0.2, 1.2, 0.2, 1.3, 1.8, NA),
Species = c("setosa", "setosa", "versicolor", "setosa",

"virginica", "virginica", "setosa")
)

sample_iris %>%
group_by(Species) %>%
group_split() %>%
map_df(fill_missing_values, method = "median")

generate_dictionary Create a data dictionary from labelled data

Description

generate_dictionary() creates a data dictionary from a specified data frame. This function is
particularly useful for understanding and documenting the structure of your dataset, similar to data
dictionaries in Stata or SPSS.

Usage

generate_dictionary(data)

inspect_na 5

Arguments

data a data frame or a survey object

Details

The function returns a tibble (a modern version of R’s data frame) with the following columns:

• position: An integer vector indicating the column position in the data frame.

• variable: A character vector containing the names of the variables (columns).

• description: A character vector with a human-readable description of each variable.

• column type: A character vector specifying the data type (e.g., numeric, character) of each
variable.

• missing: An integer vector indicating the count of missing values for each variable.

• levels: A list vector containing the levels for categorical variables, if applicable.

Value

A tibble representing the data dictionary. Each row corresponds to a variable in the original data
frame, providing detailed information about the variable’s characteristics.

Examples

Creating a data dictionary from an SPSS file

file_path <- system.file("extdata", "Wages.sav", package = "bulkreadr")

wage_data <- read_spss_data(file = file_path)

generate_dictionary(wage_data)

inspect_na Summarize missingness in data frame columns

Description

inspect_na() summarizes the rate of missingness in each column of a data frame. For a grouped
data frame, the rate of missingness is summarized separately for each group.

Usage

inspect_na(df)

Arguments

df A data frame

6 look_for

Details

The tibble returned contains the columns:

• col_name, a character vector containing column names of df1.

• cnt, an integer vector containing the number of missing values by column.

• pcnt, the percentage of records in each columns that is missing.

Value

A tibble summarizing the count and percentage of columnwise missingness for a data frame.

Examples

library(dplyr)

dataframe summary

inspect_na(airquality)

grouped dataframe summary

airquality %>%
group_by(Month) %>%
inspect_na()

look_for Look for keywords variable names and descriptions in labelled data

Description

The look_for() function is designed to emulate the functionality of the Stata lookfor command
in R. It provides a powerful tool for searching through large datasets, specifically targeting variable
names, variable label descriptions, factor levels, and value labels. This function is handy for users
working with extensive and complex datasets, enabling them to quickly and efficiently locate the
variables of interest.

Usage

look_for(
data,
...,
labels = TRUE,
values = TRUE,
ignore.case = TRUE,
details = c("basic", "none", "full")

)

pull_out 7

Arguments

data a data frame or a survey object

... optional list of keywords, a character string (or several character strings), which
can be formatted as a regular expression suitable for a base::grep() pattern,
or a vector of keywords; displays all variables if not specified

labels whether or not to search variable labels (descriptions); TRUE by default

values whether or not to search within values (factor levels or value labels); TRUE by
default

ignore.case whether or not to make the keywords case sensitive; TRUE by default (case is
ignored during matching)

details add details about each variable (full details could be time consuming for big data
frames, FALSE is equivalent to "none" and TRUE to "full")

Value

A tibble data frame featuring the variable position, name and description (if it exists) in the original
data frame.

Examples

look_for(iris)

Look for a single keyword.

look_for(iris, "petal")

look_for(iris, "s")

pull_out Extract or replace parts of an object

Description

pull_out() is similar to [. It acts on vectors, matrices, arrays and lists to extract or replace parts.
It is pleasant to use with the magrittr (%>%) and base (|>) operators.

Value

pull_out() will return an object of the same class as the input object.

8 read_csv_files_from_dir

Examples

good_choice <- letters %>%
pull_out(c(5, 2, 1, 4))

good_choice

iris %>%
pull_out(, 1:4) %>%
head()

read_csv_files_from_dir

Reads all CSV files from a directory

Description

read_csv_files_from_dir reads all csv files from the "~/data" directory and returns an ap-
pended dataframe. The resulting dataframe will be in the same order as the CSV files in the direc-
tory.

Usage

read_csv_files_from_dir(dir_path = ".", col_types = NULL, .id = NULL)

Arguments

dir_path Path to the directory containing the CSV files.

col_types One of NULL, a cols() specification, or a string. See vignette("readr") for
more details.
If NULL, all column types will be inferred from guess_max rows of the input,
interspersed throughout the file. This is convenient (and fast), but not robust. If
the guessed types are wrong, you’ll need to increase guess_max or supply the
correct types yourself.
Column specifications created by list() or cols() must contain one column
specification for each column. If you only want to read a subset of the columns,
use cols_only().
Alternatively, you can use a compact string representation where each character
represents one column:

• c = character
• i = integer
• n = number
• d = double
• l = logical
• f = factor

read_excel_files_from_dir 9

• D = date
• T = date time
• t = time
• ? = guess
• _ or - = skip

By default, reading a file without a column specification will print a message
showing what readr guessed they were. To remove this message, set show_col_types
= FALSE or set options(readr.show_col_types = FALSE).

.id The name of a column in which to store the file path. This is useful when reading
multiple input files and there is data in the file paths, such as the data collection
date. If NULL (the default) no extra column is created.

Value

A tibble. If there is any column type mismatch during data frames row binding, an error will occur.
This is because R cannot combine columns of different types. For example, you cannot combine a
column of integers with a column of characters.

See Also

read_excel_files_from_dir() which reads Excel workbooks data from a directory.

Examples

directory <- system.file("csvfolder", package = "bulkreadr")

read_csv_files_from_dir(dir_path = directory, .id = "cut")

Column types mismatch error --------------------------------------
If the `read_csv_files_from_dir()` function complains about a data type mismatch,
then set the `col_types` argument to `"c"`.
This will make all the column types in the resulting dataframe be characters.

read_excel_files_from_dir

Read Excel Workbooks data from a directory

Description

read_excel_files_from_dir() reads all Excel workbooks in the "~/data" directory and returns
an appended dataframe.

Usage

read_excel_files_from_dir(dir_path, col_types = NULL, .id = NULL)

10 read_excel_workbook

Arguments

dir_path Path to the directory containing the xls/xlsx files.

col_types Either NULL to guess all from the spreadsheet or a character vector containing
one entry per column from these options: "skip", "guess", "logical", "numeric",
"date", "text" or "list". If exactly one col_type is specified, it will be recycled.
The content of a cell in a skipped column is never read and that column will not
appear in the data frame output. A list cell loads a column as a list of length 1
vectors, which are typed using the type guessing logic from col_types = NULL,
but on a cell-by-cell basis.

.id The name of an optional identifier column. Provide a string to create an out-
put column that identifies each input. The column will use names if available,
otherwise it will use positions.

Value

A tibble. If there is any column type mismatch during data frames row binding, an error will occur.
This is because R cannot combine columns of different types. For example, you cannot combine a
column of integers with a column of characters.

See Also

read_excel_workbook() which imports data from multiple sheets of an Excel workbook

Examples

directory <- system.file("xlsxfolder", package = "bulkreadr")

read_excel_files_from_dir(dir_path = directory, .id = "cut")

Column types mismatch error --------------------------------------
If the `read_excel_files_from_dir()` function complains about a data type mismatch,
then set the `col_types` argument to `"text"`.
This will make all the column types in the resulting dataframe be characters.

read_excel_workbook Import data from multiple sheets of an Excel workbook

Description

read_excel_workbook() reads all the data from the sheets of an Excel workbook and return an
appended dataframe.

Usage

read_excel_workbook(path, col_types = NULL, .id = NULL)

read_gsheets 11

Arguments

path Path to the xls/xlsx file.

col_types Either NULL to guess all from the spreadsheet or a character vector containing
one entry per column from these options: "skip", "guess", "logical", "numeric",
"date", "text" or "list". If exactly one col_type is specified, it will be recycled.
The content of a cell in a skipped column is never read and that column will not
appear in the data frame output. A list cell loads a column as a list of length 1
vectors, which are typed using the type guessing logic from col_types = NULL,
but on a cell-by-cell basis.

.id The name of an optional identifier column. Provide a string to create an out-
put column that identifies each input. The column will use names if available,
otherwise it will use positions.

Value

A tibble. If there is any column type mismatch during data frames row binding, an error will occur.
This is because R cannot combine columns of different types. For example, you cannot combine a
column of integers with a column of characters.

See Also

read_excel(), which reads a Sheet of an Excel file into a data frame, and read_gsheets(), which
imports data from multiple sheets in a Google Sheets.

Examples

path <- system.file("extdata", "Diamonds.xlsx", package = "bulkreadr", mustWork = TRUE)

read_excel_workbook(path = path, .id = "Year")

Column types mismatch error --------------------------------------
If the `read_excel_workbook()` function complains about a data type mismatch,
then set the `col_types` argument to `"text"`.
This will make all the column types in the resulting DataFrame be characters.

read_gsheets Import data from multiple sheets in Google Sheets

Description

The read_gsheets() function imports data from multiple sheets in a Google Sheets spreadsheet
and appends the resulting dataframes from each sheet together to create a single dataframe. This
function is a powerful tool for data analysis, as it allows you to easily combine data from multiple
sheets into a single dataset.

12 read_gsheets

Usage

read_gsheets(ss, col_types = NULL, .id = NULL)

Arguments

ss Something that identifies a Google Sheet:

• its file id as a string or drive_id
• a URL from which we can recover the id
• a one-row dribble, which is how googledrive represents Drive files
• an instance of googlesheets4_spreadsheet, which is what gs4_get()

returns

Processed through as_sheets_id().

col_types Column types. Either NULL to guess all from the spreadsheet or a string of
readr-style shortcodes, with one character or code per column. If exactly one
col_type is specified, it is recycled. See Column Specification for more.

.id The name of an optional identifier column. Provide a string to create an out-
put column that identifies each input. The column will use names if available,
otherwise it will use positions.

Value

A tibble. If there is any column type mismatch during data frames row binding, an error will occur.
This is because R cannot combine columns of different types. For example, you cannot combine a
column of integers with a column of characters.

See Also

read_sheet() which reads a Google (spread)Sheet into a data frame.

Examples

sheet_id <- "1izO0mHu3L9AMySQUXGDn9GPs1n-VwGFSEoAKGhqVQh0"

read_gsheets(ss = sheet_id, .id = "sheet.name")

Column types mismatch error --------------------------------------
If the `read_gsheets()` function complains about a data type mismatch,
then set the `col_types` argument to `"c"`.
This will make all the column types in the resulting dataframe be characters.

For example,

sheet_id <- "1rrjKAV05POre9lDVtHtZePTa8VROf1onVO47cHnhrTU"

try(read_gsheets(ss = sheet_id)) # error, column types mismatch

read_gsheets(ss = sheet_id, col_types = "c")

read_spss_data 13

read_spss_data Read SPSS data file

Description

read_spss_data() is designed to seamlessly import data from an SPSS data (.sav or .zsav) files.
It converts labelled variables into factors, a crucial step that enhances the ease of data manipulation
and analysis within the R programming environment.

Usage

read_spss_data(file, label = FALSE)

Arguments

file The path to the SPSS data file.

label Logical indicating whether to use variable labels as column names (default is
FALSE).

Value

A tibble containing the data from the SPSS file.

See Also

read_stata_data() which reads Stata data file and converts labelled variables into factors.

Examples

Read an SPSS data file without converting variable labels as column names

file_path <- system.file("extdata", "Wages.sav", package = "bulkreadr")

data <- read_spss_data(file = file_path)

data

Read an SPSS data file and convert variable labels as column names

data <- read_spss_data(file = file_path, label = TRUE)

data

14 read_stata_data

read_stata_data Read Stata data file

Description

Read Stata data file

Usage

read_stata_data(file, label = FALSE)

Arguments

file The path to the Stata data file.

label Logical indicating whether to use variable labels as column names (default is
FALSE).

Value

A data frame containing the Stata data, with labeled variables converted to factors.

See Also

read_spss_data() which reads SPSS data file and converts labelled variables into factors.

Examples

Read Stata data file without converting variable labels as column names

file_path <- system.file("extdata", "Wages.dta", package = "bulkreadr")

data <- read_stata_data(file = file_path)

data

Read Stata data file and convert variable labels as column names

data <- read_stata_data(file = file_path, label = TRUE)

data

Index

as_sheets_id(), 12

base::grep(), 7

cols(), 8
cols_only(), 8
convert_to_date, 2

dribble, 12
drive_id, 12

fill_missing_values, 3

generate_dictionary, 4
gs4_get(), 12

inspect_na, 5

list(), 8
look_for, 6

pull_out, 7

read_csv_files_from_dir, 8
read_excel(), 11
read_excel_files_from_dir, 9
read_excel_files_from_dir(), 9
read_excel_workbook, 10
read_excel_workbook(), 10
read_gsheets, 11
read_gsheets(), 11
read_sheet(), 12
read_spss_data, 13
read_spss_data(), 14
read_stata_data, 14
read_stata_data(), 13

tibble, 9–12

15

	convert_to_date
	fill_missing_values
	generate_dictionary
	inspect_na
	look_for
	pull_out
	read_csv_files_from_dir
	read_excel_files_from_dir
	read_excel_workbook
	read_gsheets
	read_spss_data
	read_stata_data
	Index

